Current Issue : October-December Volume : 2021 Issue Number : 4 Articles : 5 Articles
Recently, in accordance with the demand for development of low-power semiconductor devices, a negative capacitance field-effect-transistor (NC-FET) that integrates ferroelectric material into a gate stack and utilizes negative capacitive behavior has been widely investigated. Furthermore, gate-all-around (GAA) architecture to reduce short-channel effect is expected to be applied after Fin-FET technology. In this work, we proposed a compact model describing current–voltage (I–V) relationships of an NC GAA-FET with interface trap effects for the first time, which is a simplified model by taking proper approximation in each operating region. This is a surface potential-based compact model, which is suitable for evaluating the I–V characteristics for each operating region. It was validated that the proposed model shows good agreement with the results of implicit numerical calculations. In addition, by using the proposed model, we explored the electrical properties of the NC GAA-FET by varying the basic design parameters such as ferroelectric thickness (tfe), intermediate insulator thickness (tox), silicon channel radius (R), and interface trap densities (Net)....
In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium- selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood....
Self-assembled monolayers (SAMs), molecular structures consisting of assemblies formed in an ordered monolayer domain, are revisited to introduce their various functions in electronic devices. SAMs have been used as ultrathin gate dielectric layers in low-voltage transistors owing to their molecularly thin nature. In addition to the contribution of SAMs as gate dielectric layers, SAMs contribute to the transistor as a semiconducting active layer. Beyond the transistor components, SAMs have recently been applied in other electronic applications, including as remote doping materials and molecular linkers to anchor target biomarkers. This review comprehensively covers SAM-based electronic devices, focusing on the various applications that utilize the physical and chemical properties of SAMs....
'e concept introduced by MathWorks in the Simscape product is the link representation between the SIMSCAPE library components that correspond to physical connections transmitting power. In this paper, a power insulated-gate bipolar transistor (IGBT) model using MATLAB graphical software is reproduced. An electrical IGBT behavior model using the Simscape Electronics library components is developed and analyzed. 'is model is parameterized using the constructor datasheet to ensure a good representation of the dynamic and static IGBT behaviors. An extraction and optimization studies of the IGBT model parameters using a stochastic algorithm implemented in Matlab are presented. 'e proposed method is based on the Genetic Algorithm (GA) to perfectly extract and optimize the model parameters using the mathematical model circuit equations and the provided datasheet characteristics. A simulation in the Matlab/Simulink environment and a comparison with the experimental results for an IGBT device example are carried out to demonstrate the proposed model accuracy....
InGaN-based micro-structured light-emitting diodes (LEDs) play a critical role in the field of full-color display. In this work, selected area growth (SAG) of a micro-pyramid LED array was performed on a 2-inch wafer-scale patterned SiO2 template (periodicity: 4 m diameter), by which a uniform periodic LED array was achieved. The single-element pyramid-shaped LED exhibited 6 equivalent semipolar {1-101} planes and a size of about 5 m, revealing a good crystalline quality with screw and edge dislocation densities of 8.27 107 and 4.49 108 cm2. Due to the stress–relaxation out of the SAG, the as-built compressive strain was reduced to 0.59 GPa. The LED array demonstrated a stable emission, confirmed by a small variation of electroluminescence (EL) peak wavelength over a wide range of current density up to 44.89 A/cm2, as well as tiny fluctuations (within 1.9 nm) in the EL full width at half maximum. The photoluminescence peak wavelength exhibits a good uniformity throughout the whole wafer with a discrete probability of only 0.25%....
Loading....